Oxygen profiles in egg masses predicted from a diffusion-reaction model.
نویسندگان
چکیده
We developed a novel diffusion-reaction model to describe spatial and temporal changes in oxygen concentrations in gelatinous egg masses containing live, respiring embryos. We used the model in two ways. First, we constructed artificial egg masses of known metabolic density using embryos of the Antarctic sea urchin Sterechnius neumayeri, measured radial oxygen profiles at two temperatures, and compared our measurements to simulated radial oxygen profiles generated by the model. We parameterized the model by measuring the radius of the artificial masses, metabolic densities (=embryo metabolic rate x embryo density) and oxygen diffusion coefficients at both ambient (-1.5 degrees C) or slightly warmer (+1.5-2 degrees C) temperatures. Simulated and measured radial oxygen profiles were similar, indicating that the model captured the major biological features determining oxygen distributions. Second, we used the model to analyze sources of error in step-change experiments for determining oxygen diffusion coefficients (D), and to determine the suitability of simpler, analytical equations for estimating D. Our analysis indicated that embryo metabolism can lead to large (several-fold) overestimates of D if the analytical equation is fitted to step-down-traces of central oxygen concentration (i.e. external oxygen concentration stepped from some high value to zero). However, good estimates of D were obtained from step-up-traces. We used these findings to estimate D in egg masses of three species of nudibranch molluscs: two Antarctic species (Tritonia challengeriana and Tritoniella belli; -1.5 and +2 degrees C) and one temperate Pacific species (Tritonia diomedea; 12 and 22 degrees C). D for all three species was approximately 8 x 10(-6) cm(2) s(-1), and there was no detectable effect of temperature on estimated D. For the Antarctic species, D in egg masses was 70-90% of its value in seawater of similar temperature.
منابع مشابه
Oxygen Transport in Egg Masses of the Amphibians Rana Sylvatica and Ambystoma Maculatum: Convection, Diffusion and Oxygen Production by Algae
Many amphibians lay their eggs in gelatinous masses up to 10­20 cm in diameter, posing problems for diffusive oxygen delivery. Oxygen may also be provided by water convection between eggs or by oxygen production by endogenous algae. We studied egg masses of two local amphibians, Rana sylvatica and Ambystoma maculatum, to estimate the importance of each of these processes. We injected dye to...
متن کاملTemperature-oxygen interactions in Antarctic nudibranch egg masses.
The Southern Ocean is one of the coldest, most stable marine environments on Earth and represents a unique environment for investigating metabolic consequences of low temperature. Here we test predictions of a new diffusion-reaction model of O(2) distributions in egg masses, using egg masses of the Antarctic nudibranch mollusk, Tritonia challengeriana. When warmed from -1.5 degrees to +1.5 degr...
متن کاملChecking the Sensitivity of Solute Advection- Dispersion Model to Reaction Coefficients and River Hydraulic Properties in the Process of Dissolved Oxygen Simulation
Nowadays, environmental pollutions especially water pollution is increasingly developing. One of the problems of entering the pollutants to rivers is reduction in the concentration of river dissolved oxygen. In order to manage the water resources, amount of dissolved oxygen should be predicted. This study presents a novel equation for simulating the concentration of river dissolved oxygen by ad...
متن کاملEgg - Mass Size and Cell Size : Effects of Temperature on Oxygen Distribution
SYNOPSIS. TWO processes strongly influence the distribution of oxygen within egg masses and cells: the supply of oxygen by diffusion and the consumption of oxygen by embryos and mitochondria. These processes are differentially sensitive to temperature. The diffusion coefficient of oxygen depends only weakly on temperature, having a Ql0 of approximately 1.4. In contrast, the consumption of oxyge...
متن کاملOxygen in egg masses: interactive effects of temperature, age, and egg-mass morphology on oxygen supply to embryos.
Embryos of many marine invertebrates are encased in gelatinous masses for part or all of development. Because gel and intervening embryos retard oxygen flux, such a life-history mode profoundly affects partial pressures of metabolic gases surrounding embryos. However, little is known about relationships between egg-mass structure and the opportunities and constraints imposed on structure by met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 211 Pt 5 شماره
صفحات -
تاریخ انتشار 2008